Bewegungen unter dem Einfluss mehrerer Kräfte

Bei diesen Aufgaben wird der Zusammenhang zwischen den Bewegungsgrößen $(x, v_0, v, a \text{ und } t)$ und den angreifenden Kräften hergestellt. Die Beschleunigung a verbindet die Bewegungsgrößen mit den Kräften über das Gesetz von Newton: $F_{res} = m \cdot a$.

Die meisten Aufgaben lassen sich lösen, indem man das folgende Schema befolgt:

- 1. Positive Richtung festlegen (meist in Bewegungsrichtung)
- 2. Anfertigen eines Kräfteplans mit allen für die Bewegung relevanten Kräften (Reibungskraft gegen die Bewegungsrichtung)
- 3. Aufstellen der Betragsgleichung für die Kräfte (incl. Vorzeichen)
- 4. Ersetzen der Kräfte durch die bekannten Größen $(F_{res} = m \cdot a; F_{Reib} = \mu \cdot m \cdot g \cdot cos(\alpha); F_{Hangabtrieb} = m \cdot g \cdot sin(\alpha); ...)$
- 5. Auflösen nach der gesuchten Größe und ihre Berechnung

Aufgabe 1

Ein Pkw mit der Masse 1,0t startet auf waagrechter Straße aus der Ruhe. Die Zugkraft des Motors beträgt $F_M = 4,0$ kN. Berechnen Sie den Betrag seiner Geschwindigkeit 5,0 Sekunden nach dem Start, wenn

- a) sich der Pkw reibungsfrei bewegt. (72 km h⁻¹)
- b) die leicht angezogene Handbremse eine Bremskraft F_B von 0,50 kN zusätzlich zu F_M verursacht. (63 km h⁻¹)
- c) zusätzlich zu b) noch die Reibung mit $\mu = 0.030$ wirkt. (58 km h⁻¹)

Aufgabe 2

Ein Pkw mit der Masse 1,0t startet aus der Ruhe heraus auf einer Straße, die mit 10% gegen ansteigt. Die Zugkraft des Motors beträgt $F_M = 4,0 \text{ kN}$.

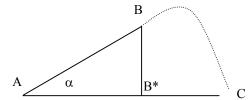
Berechnen Sie den Betrag seiner Geschwindigkeit 5,0 Meter nach dem Start, wenn

- a) sich der Pkw reibungsfrei bewegt. (20 km h⁻¹)
- b) die leicht angezogene Handbremse eine Bremskraft F_B von 0,50 kN zusätzlich zu F_M verursacht. (18 km h⁻¹)
- c) zusätzlich zu b) noch die Reibung mit $\mu = 0.030$ wirkt. (17 km h⁻¹)

Aufgabe 3

Wie Aufgabe 2, nur soll jetzt die Straße abfallen.

Fertigen Sie einen Kräfteplan mit den für die Bewegung relevanten Kräften an. Geben Sie den Term für die beschleunigende Kraft an.


Aufgabe 4

4.0 Auf einer waagrechten Unterlage liegt ein Körper 1 der Masse $m_1 = 1.0$ kg. Er wird von einem zweiten Körper mit der Masse $m_2 = 0.50$ kg über ein masseloses Seil nach rechts gezogen. Die Gleitreibungszahl zwischen Körper 1 und Unterlage beträgt 0.40

- 4.1 Berechnen Sie, wie groß die Haftreibungszahl höchstens sein darf, damit sich die Anordnung in Bewegung setzt. $(\mu_H < 0.50)$
- 4.2 Berechnen Sie den Betrag der Geschwindigkeit, mit der m_2 nach h = 3.0 m am Boden aufprallt. (2.0 ms⁻¹)
- 4.3 Berechnen Sie, wie weit der Körper 1 nach dem Aufprall noch rutscht. (51 cm)
- 4.4 Berechnen Sie, welche Kraft auf das Seil wirkt. (4,7 N)

Bewegungen unter dem Einfluss mehrerer Kräfte (2)

Aufgabe 5

- 5.0 Ein Körper der Masse 1,5 kg gleitet eine um 30° gegen die Horizontale geneigte Bahn vom Punkt A zum Punkt B hinauf. Beide Punkte sind 3,0 m weit voneinander entfernt. Auf dieser Strecke ist die Reibungskraft 20% der Gewichtskraft. Der Körper erreicht den Punkt B mit einer Geschwindigkeit vom Betrag 8,4 ms⁻¹. Ab dem Punkt B geht die Bewegung in einen schrägen, reibungsfreien Wurf über.
- 5.1 Berechnen Sie die Reibungszahl µ auf der geneigten Ebene.
- 5.2 Berechnen Sie, welche Geschwindigkeit der Körper im Punkt A haben muss.
- 5.3 Berechnen Sie, wie hoch der Körper steigt, und wie lange er braucht, um den Scheitelpunkt zu erreichen.
- 5.4 Berechnen Sie die Flugzeit, bis er im Punkt C auftrifft.
- 5.5 Berechnen Sie die (horizontale) Entfernung des Auftreffpunktes C vom Fußpunkt B* der Rampe.
- 5.6 Berechnen Sie den Betrag der Aufprallgeschwindigkeit und den Winkel β, unter dem der Körper aufprallt. Und wems noch nicht reicht:
- 5.7 Nun wird die Flugphase noch einmal betrachtet, dieses mal aber mit Gegenwind, der eine konstante Kraft F_W auf den Körper ausübt (na ja, wir tun mal so.). Wie groß muss diese Kraft sein, damit der Körper im Punkt B* aufprallt? (🍑 🖫 🍑)
 Überprüfen Sie die Rechnung, indem Sie die Flugbahn mit GeoGebra mit variabler Kraft F_W darstellen.

Aufgabe 6

6.0 Aus einer anonymen Quelle wurde uns ein "leicht idealisiert[es]" t-v-Diagramm eines Fallschirmspringers zugespielt. Neben der Gewichtskraft wirkt auch noch die Luftwiderstandskraft $F_W = k \cdot v^2$. Das Diagramm soll nun kritisch untersucht werden.

- 6.1 Untersuchen Sie ob die Beschleunigung zum Zeitpunkt t = 0s im Diagramm korrekt dargestellt wird.
- 6.2 Kurz vor dem Öffnen des Fallschirms hat sich eine nahezu konstante Fallgeschwindigkeit eingestellt. Bestimmen Sie ausgehend von einem Kraftansatz den Quotienten k/m, wobei m die unbekannte Masse des Fallschirmspringers ist.
 - Führen Sie auch eine Einheitenkontrolle durch. ($k = 2,7 \cdot 10^{-3} \text{ m}^{-1}$)
- 6.3 Verwenden Sie das Ergebnis von Aufgabe 6.2, um den Betrag der Beschleunigung zum Zeitpunkt t = 10s zu berechnen. Vergleichen Sie den berechneten Wert mit dem Wert, der sich aus dem Diagramm ergibt.